If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=8x^2
We move all terms to the left:
8-(8x^2)=0
a = -8; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-8)·8
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-8}=\frac{-16}{-16} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-8}=\frac{16}{-16} =-1 $
| 7=t3+ 5 | | w2+95=95 | | t-3+4t=3(3t-9)=6 | | 4x^2-20=16x | | 9-4h=14h+1+8 | | 2x+11.5=27.6 | | –5+4x=1+6x | | 4-6a=-14 | | 2/3b=84 | | .4-3y=31 | | r2−100=0 | | a^2=0.64 | | -20=-7+y | | 12-p=12 | | 12-6f=18 | | 8/9-4/7=2x-8/63 | | x-8=11* | | 11=13k-2 | | 8/9-4/7=2x-8* | | -4(3x-1)=10-4x=-¾ | | 345=-35-q | | x+27=98 | | 1-11j=23 | | 345=-35-w | | 3a+3=39= | | -1.2=z/4.6 | | 2p-9=3(2p-5)=3/2 | | 3x+12=7x-9 | | 345=-35-a | | 6j+2=-16 | | 3(x-7)-2(2x+3)=-29 | | 7x-56=11x-55 |